
Page of 1 16 Paladin Blockchain Security

Smart Contract
Security Assessment

For PolyPup Collar
03 September 2021

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 3

1 Overview 4

1.1 Summary 4

1.2 Contracts Assessed 4

1.3 Findings Summary 5

1.3.1 CollarToken 6

1.3.2 MasterChef 6

2 Findings 7

2.1 CollarToken 7

2.1.1 Token Overview 7

2.1.2 Privileged Roles 8

2.1.3 Issues & Recommendations 9

2.2 MasterChef 12

2.2.1 Privileged Roles 12

2.2.2 Issues & Recommendations 13

Page of 2 16 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity

of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in

the codes that were provided for the scope of this audit. This audit report does not constitute

agreement, acceptance or advocation for the Project that was audited, and users relying on this

audit report should not consider this as having any merit for financial advice in any shape, form or

nature. The contracts audited do not account for any economic developments that may be pursued

by the Project in question, and that the veracity of the findings thus presented in this report relate

solely to the proficiency, competence, aptitude and discretion of our independent auditors, who

make no guarantees nor assurance that the contracts are completely free of exploits, bugs,

vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor

transmitted to any persons or parties on any objective, goal or justification without due written

assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor

should it be used to signal that any persons reading this report should invest their funds without

sufficient individual due diligence regardless of the findings presented in this report. Information is

provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the

contracts audited. In no event will Paladin or its partners, employees, agents or parties related to

the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or

actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to

cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and

safeguards may yet be insufficient, and users should exercise considerable caution when

participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate

recommendations to the Project team with respect to the rectification, amendment and/or revision

of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole

responsibility of the Project team to sufficiently test and perform checks, ensuring that the

contracts are functioning as intended, specifically that the functions therein contained within said

contracts have the desired intended effects, functionalities and outcomes of the Project team.

Page of 3 16 Paladin Blockchain Security

1 Overview

This report has been prepared for PolyPup’s Collar layer. Paladin provides a user-

centred examination of the smart contracts to look for vulnerabilities, logic errors

or other issues from both an internal and external perspective.

At the time of assessment, the contracts were sent to Paladin via a GitHub

repository and may differ from the ones deployed on the blockchain.

1.1 Summary

1.2 Contracts Assessed

Project Name PolyPup Collar

URL https://polypup.finance/

Platform Polygon

Language Solidity

Name Contract

Live Code

Match

CollarToken CollarToken.sol

MasterChef MasterChef.sol

Source Code
https://github.com/PolyPup-Farm/contracts-collar/tree/

e8048a9b34b7b0dfdc5d4e6b9c7be605faab3032

PENDING

PENDING

Page of 4 16 Paladin Blockchain Security

1.3 Findings Summary

Classification of Issues

Severity Found Resolved

Partially

Resolved

Acknowledged

(no change made)

0 - - -

0 - - -

3 2 1 -

6 3 - 3

Total 9 5 1 3

 High

 Medium

 Low

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead

towards loss of funds, control, or impairment of the contract and its

functions. Issues under this classification are recommended to be fixed with

utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is

somewhat limited. Issues under this classification are recommended to be

fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the

project or its users. Issues under this classification are recommended to be

fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level

of risk, if any.

 High

 Informational

 Medium

 Low

Page of 5 16 Paladin Blockchain Security

1.3.1 CollarToken

1.3.2 MasterChef

ID Severity Summary Status

01 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

02 Governance functionality is broken

03 delegateBySig can be frontrun and cause denial of service
(present in all Goose forks)

ACKNOWLEDGED

LOW
PARTIAL

INFO

INFO

ACKNOWLEDGED

ID Severity Summary Status

04 Setting devAddress to the zero address will break the deposit

and withdraw functions

05 updateEmissionRate has no maximum safeguard

06 collar can be made immutable

07 BONUS_MULTIPLIER looks to be redundant

08 Rounding vulnerability to tokens with a very large supply can
cause large supply tokens to receive zero emissions

09 Contract uses raw subtraction

INFO

RESOLVED

RESOLVED

RESOLVED

INFO

LOW

INFO

RESOLVED

RESOLVED

ACKNOWLEDGED

INFO

LOW

Page of 6 16 Paladin Blockchain Security

2 Findings

2.1 CollarToken

The contract allows for COLLAR tokens to be minted when the mint function is

called by the Owner, who at the time of deployment would be the deployer.

However, ownership is generally transferred to the Masterchef via the

transferOwnership function for emission rewards to be minted and distributed to

users staking in the Masterchef.

The mint function can be used to pre-mint tokens for various uses including

injection of initial liquidity, token presale, airdrops, and others.

2.1.1 Token Overview

Address TBC

Token Supply Unlimited

Decimal Places 18

Transfer Max Size No maximum

Transfer Min Size No minimum

Transfer Fees None

Page of 7 16 CollarToken Paladin Blockchain Security

2.1.2 Privileged Roles

The owner of the CollarToken contract should be transferred to the Masterchef.

The following functions can be called by the owner of the contract:

• mint

Page of 8 16 CollarToken Paladin Blockchain Security

2.1.3 Issues & Recommendations

Issue #01 mint function can be used to pre-mint large amounts of tokens

before ownership is transferred to the Masterchef

Severity

Description The mint function could be used to pre-mint tokens for legitimate

uses including, but not limited to, the injection of initial liquidity,

token presale, or airdrops; however, this function may also be used

to pre-mint and dump tokens when the token contract has been

deployed but before ownership is set to the Masterchef contract.

This risk is prevalent amongst less-reputable projects, and any pre-

mints can be prominently seen on the Blockchain.

Recommendation Consider being forthright if this mint function is to be used by

letting your community know how much was minted, where they are

currently stored, if a vesting contract was used for token unlocking,

and finally the purpose of the mints.

Resolution

The client has stated that 10,000 tokens will be pre-minted for

liquidity purposes, after which token ownership will be transferred

to the Masterchef. Once this has been confirmed, we shall mark this

issue as Resolved.

PARTIALLY RESOLVED

LOW SEVERITY

Page of 9 16 CollarToken Paladin Blockchain Security

Issue #02 Governance functionality is broken

Severity

Description Although there is YAM related delegation code in the token

contract which is usually used for governance and voting, the

delegation code can be abused as the delegates are not moved

during transfers and burns. This allows for double spending

attacks on the voting mechanism.

It should be noted that this mistake is present in pretty much

every single farm out there including PancakeSwap and even

sushiswap.

Recommendation(s) The broken delegation related code can be removed to reduce

the size of the contract. If voting is ever desired, it can still be

done through Snapshot.org, used by many of the larger projects.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 10 16 CollarToken Paladin Blockchain Security

Issue #03 delegateBySig can be frontrun and cause denial of service

(present in all Goose forks)

Severity

Location Line 118

require(nonce == nonces[signatory]++, "EGG::delegateBySig:

invalid nonce");

Description Currently if delegateBySig is executed twice, the second execution

will be reverted. It is thus in theory possible for a bot to pick up

delegateBySig transactions in the mempool and execute them

before a contract can. The issue with this is that the rest of said

contract functionality would be lost as well.

This could be a problem in case it would have been executed by a

contract that would have rewarded you for your delegation for

example.

Recommendation Similar to the broken governance functionality issue, consider

removing this section of the contract as snapshot.org is a more

viable alternative.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 11 16 CollarToken Paladin Blockchain Security

2.2 MasterChef

The Masterchef is a fork of Goose Finance’s Masterchef. A notable feature of

forking this Masterchef is the removal of the migrator function from Pancakeswap,

which of late has been used maliciously to steal users’ tokens. We commend

Polypup Collar on their decision to fork a relatively safer version of the

Masterchef. Finally, the deposit fees have an upper limit of 4%, which is a

reasonable cap.

2.2.1 Privileged Roles

The following functions can be called by the owner of the Masterchef:

• add

• set

• setDevAddress

• setFeeAddress

• updateEmissionRate

• updateStartBlock

Page of 12 16 MasterChef Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #04 Setting devAddr to the zero address will break the deposit and

withdraw functions

Severity

Description Any attempt to transfer or mint tokens to the zero address will

revert, thus causing deposits and withdrawals to revert if the

devAddr is ever set to the zero address.

Recommendation(s) To prevent this from ever happening by accident and to limit

governance risks, consider adding a requirement like the

following:

require(_devddr != address(0), “!nonzero”);

to the setDevAddress function.

Resolution RESOLVED

LOW SEVERITY

Issue #05 updateEmissionRate has no maximum safeguard

Severity

Description Projects sometimes accidentally update their emission rate to a

severely high number either by accident or with malicious intent.

Recommendation(s) Consider adding a MAX_EMISSION_RATE variable and setting it to

a reasonable value.

require(_CollarPerBlock <= MAX_EMISSION_RATE,”Too high”);

Resolution

LOW SEVERITY

There is now an upper limit of 2 tokens per block.

RESOLVED

Page of 13 16 MasterChef Paladin Blockchain Security

Issue #06 collar can be made immutable

Severity

Description Variables that are only set in the constructor but never modified

can be indicated as such with the immutable keyword. This is

considered best practice since it makes the code more accessible

for third-party reviewers and saves gas.

Recommendation(s) Consider making collar explicitly immutable.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #07 BONUS_MULTIPLIER looks to be redundant

Severity

Description The constant variable BONUS_MULTIPLIER does not look to be

used in the Masterchef contract and can thus be removed.

Recommendation(s) Consider removing BONUS_MULTIPLIER and associated

comments.

Resolution

INFORMATIONAL

RESOLVED

Page of 14 16 MasterChef Paladin Blockchain Security

Issue #08 Rounding vulnerability to tokens with a very large supply can

cause large supply tokens to receive zero emissions

Severity

Description Within updatePool, accCollarPerShare is based on the

lpSupply variable.

pool.accCollarPerShare =

pool.accCollarPerShare.add(collarReward.mul(1e12).div(lpSupp

ly));

However, if this lpSupply becomes a severely large value,

precision errors may occur due to rounding. This is famously

seen when pools decide to add meme-tokens which usually have

huge supplies and no decimals.

Recommendation(s) Consider increasing precision to 1e18 across the entire contract.

Resolution

INFORMATIONAL

RESOLVED

Issue #09 Contract uses raw subtraction

Severity

Location Line 1722

_amount = pool.lpToken.balanceOf(address(this)) -

balanceBefore;

Description Although the risk of underflow is low, it is considered best

practice to use SafeMath rather than raw addition and

subtraction in arithmetic operations.

Recommendation(s) Consider using SafeMath’s sub rather than raw subtraction.

Resolution RESOLVED

INFORMATIONAL

Page of 15 16 MasterChef Paladin Blockchain Security

Page of 16 16 MasterChef Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 CollarToken
	1.3.2 MasterChef

	2 Findings
	2.1 CollarToken
	2.1.1 Token Overview
	2.1.2 Privileged Roles
	2.1.3 Issues & Recommendations

	2.2 MasterChef
	2.2.1 Privileged Roles
	2.2.2 Issues & Recommendations

