
Page of 1 38 Paladin Blockchain Security

Smart Contract
Security Assessment

For VersaGames
20 April 2022

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 3

1 Overview 4
1.1 Summary 4
1.2 Contracts Assessed 4
1.3 Findings Summary 5

1.3.1 VersaCROBar 6

1.3.2 SmartCraftInitializable 6

1.3.3 SmartCraftInitializable (Dual Yield) 7

1.3.4 VersaCROIGO 7

1.3.5 VersaToken 7

1.3.6 Timelock 8

2 Findings 9

2.1 VersaCROBar 9
2.1.1 Issues & Recommendations 10

2.2 SmartCraftInitializable 13
2.2.1 Privileged Functions 13

2.2.2 Issues & Recommendations 14

2.3 SmartCraftInitializable (Dual Yield) 24
2.3.1 Privileged Functions 24

2.3.2 Issues & Recommendations 25

2.4 VersaCROIGO 26
2.4.1 Privileged Functions 26

2.4.2 Issues & Recommendations 27

2.5 VersaToken 32
2.5.1 Token Overview 32

2.5.1 Privileged Functions 33

2.5.2 Issues & Recommendations 34

2.6 Timelock 37
2.6.1 Issues & Recommendations 37

Page of 2 38 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so.

Page of 3 38 Paladin Blockchain Security

1 Overview
This report has been prepared for VersaGames on the Cronos network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1 Summary

1.2 Contracts Assessed

Project Name VersaGames

URL https://versagames.io/

Platform Cronos

Language Solidity

Name Contract
Live Code
Match

VersaCROBar 0x8216E362d07741b562eBB02C61b1659B6B1258aD

SmartCraftInitializable 0x0c297000118aadD466da1D3d7800af7a8fB41A6b

SmartCraftInitializable
(Dual Yield)

0x7AdeC517739FCb7451c43CABC207ABE1F5fFfAd6

VersaCROIGO Not yet deployed

VersaToken 0x00D7699b71290094CcB1a5884cD835bD65a78c17

Timelock 0x24734eac8901743f897702663e3d356d22306a7a MATCH

MATCH

MATCH

PENDING

MATCH

MATCH

Page of 4 38 Paladin Blockchain Security

https://versagames.io/

1.3 Findings Summary

Classification of Issues

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

1 - 1 -

2 1 - 1

11 8 1 2

17 12 - 5

Total 31 21 2 8

 Medium

 High

 Low

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Medium

 Informational

 Low

 High

Page of 5 38 Paladin Blockchain Security

1.3.1 VersaCROBar

1.3.2 SmartCraftInitializable

ID Severity Summary Status

01 The first user can steal the tokens deposited by the next ones

02 xVERSA price can be manipulated

03 Lack of safeTransfer usage within enter and leave

04 versa can be made immutable

INFO RESOLVED

PARTIAL

INFO

LOW

RESOLVED

RESOLVEDMEDIUM

ID Severity Summary Status

05 Deposits do not support tokens with a fee on transfer

06 Pool uses the contract balance to figure out the total deposits

07 Contracts needs sufficient tokens

08 Denial of service: Governance emergencyRewardWithdraw takes
out all reward tokens but does not stop reward emission

09 Contract malfunctions if the staking and reward tokens are the same

10 stopReward could be used to add rewards

11 Reward per block cannot be updated once rewards have started

12 msg.sender is unnecessarily cast to address(msg.sender)

13 SMART_CRAFT_FACTORY can be made immutable

14 Lack of validation

15 Typographical errors

16 poolLimitPerUser is vulnerable to Sybil attacks

17 Lack of events for stopReward

HIGH

RESOLVED

RESOLVED

INFO

INFO

LOW

PARTIAL

ACKNOWLEDGED

RESOLVED

RESOLVED

RESOLVED

INFO

ACKNOWLEDGED

INFO

RESOLVED

ACKNOWLEDGED

LOW ACKNOWLEDGED

INFO

LOW

RESOLVED

RESOLVED

LOW

MEDIUM

INFO

INFO

Page of 6 38 Paladin Blockchain Security

1.3.3 SmartCraftInitializable (Dual Yield)

1.3.4 VersaCROIGO

1.3.5 VersaToken

ID Severity Summary Status

18 rewardToken and reward2Token could be the same token RESOLVEDINFO

ID Severity Summary Status

19 offeringToken lacks validation

20 Deposits do not support tokens with a fee on transfer

21 Unnecessary precision for user allocations

22 startBlock and endBlock lack validation

23 Governance privileges: Admin can withdraw all lpTokens and
offeringToken at any time

24 limitPerUserInLP is vulnerable to Sybil attacks

25 Typographical errors

26 msg.sender is unnecessarily cast to address(msg.sender)

27 lpToken and offeringToken can be made immutable

LOW

LOW

LOW

RESOLVED

INFO

INFO

ACKNOWLEDGED

LOW

RESOLVED

INFO

INFO

RESOLVED

LOW

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

ID Severity Summary Status

28 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

29 Governance functionality is broken

30 delegateBySig can be frontrun and cause denial of service

31 mint can be made external

RESOLVED

INFO

LOW

ACKNOWLEDGED

ACKNOWLEDGEDINFO

ACKNOWLEDGEDINFO

Page of 7 38 Paladin Blockchain Security

1.3.6 Timelock

No issues found.

Page of 8 38 Paladin Blockchain Security

2 Findings

2.1 VersaCROBar

The VersaCROBar contract is a fork of SushiSwap’s SushiBar. Users deposit VERSA
tokens in this contract and receive xVERSA, the staked token of Versa. Upon
creation, the VERSA:xVERSA ratio is 1:1, which means that each depositor receives
an xVERSA amount equal to the VERSA amount they deposited. Every time VERSA
tokens are sent directly to the contract (mainly by the protocol), the VERSA:xVERSA
ratio increases. When users withdraw, they receive some bonus VERSA token
proportional to the VERSA:xVERSA ratio.

By design, the ratio is always increasing or constant.

Page of 9 38 VersaCROBar Paladin Blockchain Security

2.1.1 Issues & Recommendations

Issue #01 The first user can steal the tokens deposited by the next ones

Severity

Location Line 754

uint256 what = _amount.mul(totalShares).div(totalVersa);

Description When the totalShares is really low, especially upon creation, an
user can mint an infinitesimal amount of xVERSA at a 1:1 ratio and
send a big amount of VERSA to the contract to make the
totalVersa amount really big.

When other users try to enter and stake their tokens, they may
receive 0 xVERSA, or in the best case, a rounded down number. The
first users that were able to get some xVERSA will then be able to
steal users’ token deposited to the contract.

Recommendation Consider permanently locking 1 VERSA and 1 xVERSA by minting it
to this contract in the constructor, so totalVersa will always be at
least equal to 1e18, ensuring no rounding down.

Resolution
The client entered with 1 VERSA and locked it to ensure this exploit
will not happen.

RESOLVED

MEDIUM SEVERITY

Page of 10 38 VersaCROBar Paladin Blockchain Security

Issue #02 xVERSA price can be manipulated

Severity

Location Line 745

uint256 totalVersa = versa.balanceOf(address(this));

Line 765

uint256 what =

_share.mul(versa.balanceOf(address(this))).div(totalShares);

Description xVERSA price can be manipulated by sending tokens manually.

The xVERSA price can also be manipulated to flash enter/leave calls
within a single transaction. This is not a problem to the protocol
itself but might be something to consider in derivative protocols.

Recommendation Consider using a local variable that will store the amount of VERSA
sent to this contract. Make sure to add a deposit function to be
able to add Versa reward tokens to that contract to increase the
 VERSA:xVERSA ratio, while allowing only a set of addresses to be
able to use that function.

Resolution
The client has indicated that this is not a problem for their smart
contract protocol as they do not use this ratio for any critical
functionality outside of the VersaCROBar.

PARTIALLY RESOLVED

LOW SEVERITY

Page of 11 38 VersaCROBar Paladin Blockchain Security

Issue #03 Lack of safeTransfer usage within enter and leave

Severity

Location Line 758

versa.transferFrom(msg.sender, address(this), _amount);

Line 769

versa.transfer(msg.sender, what);

Description In the enter and leave functions the transfer method is used to
transfer tokens. This will not work for tokens that returns false on
transfer (or malformed tokens that do not have a return value).

This is not an issue for VERSA tokens, but if the contract is forked,
it may become an issue for these forks.

Recommendation Consider using safeTransfer instead of transfer as is done
throughout most of this codebase.

Resolution

INFORMATIONAL

RESOLVED

Issue #04 versa can be made immutable

Severity

Location Line 734

IERC20 public versa;

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly immutable.

Resolution RESOLVED

INFORMATIONAL

Page of 12 38 VersaCROBar Paladin Blockchain Security

2.2 SmartCraftInitializable

The SmartCraftInitializable contract allows users to deposit stakedToken and
receive rewardToken. The contract looks a lot like a Masterchef but with a single
pool. The rewardToken is sent by the Admins, and not minted by it, so the rewards
balance needs to be constantly monitored to make sure that everyone can claim
their shares.

The owner can add a maximum of stakedToken deposited per user, and once this
limit is reached, users will not be able to deposit anymore.

2.2.1 Privileged Functions

The following functions can be called by the owner of the contract:

• initialize

• emergencyRewardWithdraw

• recoverWrongTokens

• stopReward

• updatePoolLimitPerUser

• updateRewardPerBlock

• updateStartAndEndBlocks

• updateRewardPerBlockAfterStart

• renounceOwnership

• transferOwnership

Page of 13 38 SmartCraftInitializable Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #05 Deposits do not support tokens with a fee on transfer

Severity

Description Within the deposit function, there is no logic that supports tokens
with a fee on transfer. Therefore if such tokens are deposited, the
contract will receive less tokens than the user will get credited. This
could be exploited where a malicious user can drain the whole pool,
which results in absurd reward minting.

Recommendation Consider adding before-after logic for fee-on-transfer tokens for
the deposit function.

Resolution
The client has indicated that they will never support such tokens.
This issue is marked as partially resolved as users might still be
severely impacted if such a token is ever deposited.

PARTIALLY RESOLVED

HIGH SEVERITY

Page of 14 38 SmartCraftInitializable Paladin Blockchain Security

Issue #06 Pool uses the contract balance to figure out the total deposits

Severity

Description As with pretty much all Masterchefs and staking contracts, the total
number of tokens in the contract is used to determine the total
number of deposits. This can cause dilution of rewards when people
accidentally send tokens to the masterchef.

This issue is rated as Medium because stakedToken can be the
same token as the rewardToken and cause even more dilution. This
is again amplified because the contract does not mint its token, they
need to be transferred to the contract beforehand.

Recommendation Consider adding an lpSupply variable to the PoolInfo that keeps
track of the total deposits.

Resolution

MEDIUM SEVERITY

The client has indicated that they however will not support fee-on-
transfer tokens which should remove most if not all of the user
impact as long as this is respected.

ACKNOWLEDGED

Page of 15 38 SmartCraftInitializable Paladin Blockchain Security

Issue #07 Contracts needs sufficient tokens

Severity

Description As the rewardTokens are sent to the contract by the admins and not
minted by the contract, the transfer of reward tokens to users might
revert if the balance in the contract is too low (i.e., there are not
have enough tokens to reward users).

Recommendation Consider making sure that the contract always has enough tokens.

The easiest way would be to send the entire amount needed directly
to the contract (as the rewardPerBlock cannot be changed once the
pool has started. This amount would be equal to rewardPerBlock *
(bonusEndBlock - startBlock).

Resolution

LOW SEVERITY

The team has indicated that they will make sure to fully fund these
contracts during deployment.

ACKNOWLEDGED

Issue #08 Denial of service: Governance emergencyRewardWithdraw takes
out all reward tokens but does not stop reward emission

Severity

Description The emergencyRewardWithdraw does not set the bonusEndBlock to
the current block.number. Because of this, all withdrawals may
revert because the contract may no longer have enough tokens to
transfer it to the users.

Recommendation Consider setting the bonusEndBlock to block.number to prevent
this issue.

It should be noted that users might and likely will still have pending
harvests which would still cause functions to fail. A
safeTokenTransfer function that transfers up to the contract's
balance might be ideal. Such functionality is present in most
masterchefs.

Resolution

LOW SEVERITY

The team has indicated they do not plan to ever call this function.

ACKNOWLEDGED

Page of 16 38 SmartCraftInitializable Paladin Blockchain Security

Issue #09 Contract malfunctions if the staking and reward tokens are the
same

Severity

Description If the two tokens are the same, updatePool will be incorrect
because the rewardToken would be incorporated in
stakedTokenSupply, causing rewards to be diluted.

Line 1143

uint256 stakedTokenSupply =

stakedToken.balanceOf(address(this));

Additionally, the emergencyRewardWithdraw function could
withdraw a user’s deposits.

L1240

rewardToken.safeTransfer(address(msg.sender), _amount);

Recommendation Consider adding a requirement that the two tokens are different.

Resolution
The recommendation has been implemented as a requirement in
the constructor of the contract. This enforces that both tokens must
not be equal to each other.

RESOLVED

LOW SEVERITY

Page of 17 38 SmartCraftInitializable Paladin Blockchain Security

Issue #10 stopReward could be used to add rewards

Severity

Location Lines 1263 - 1265

function stopReward() external onlyOwner {

 bonusEndBlock = block.number;

}

Description The function stopReward could be used to add rewards when the
rewards are over because it sets the bonusEndBlock to the current
block, but the rewards may already be finished. This will allow
rewards to be re-enabled and be distributed from the previous
bonusEndBlock to the current block number.

Recommendation Consider checking that block.number < bonusEndBlock to prevent
additional rewards from being distributed.

Resolution

LOW SEVERITY

The recommended check has been added to the stopReward
function.

RESOLVED

Page of 18 38 SmartCraftInitializable Paladin Blockchain Security

Issue #11 Reward per block cannot be updated once rewards have started

Severity

Description The rewardPerBlock variable cannot be updated once the rewards
have started. We have raised this issue to confirm that this is
intended.

Recommendation Consider adding a function to update the rewards rate if needed
while adding a cap to prevent setting it to a huge value. If the
rewardPerBlock changes, consider updating the pool to reward
users accurately.

This issue can also be resolved on the note that VersaGames does
not need to adjust the emission rate after rewards start.

Resolution

INFORMATIONAL

The client has added a updateRewardPerBlockAfterStart
privileged function. They have added a maximum value to cap the
maximum reward rate. This value is set in the constructor and is
immutable, therefore users should check that this value was set
accordingly and not to an absurdly high number.

RESOLVED

Issue #12 msg.sender is unnecessarily cast to address(msg.sender)

Severity

Description msg.sender is cast to address(msg.sender) throughout the
contract when used with pool.lpToken.safeTransfer(). This is
unnecessary.

Recommendation Consider replacing all occurrences of address(msg.sender) with
msg.sender. An even better solution to be consistent would be to
replace address(msg.sender) by _msgSender() as this contract
inherits from Ownable that inherits from Context.

Resolution

INFORMATIONAL

RESOLVED

Page of 19 38 SmartCraftInitializable Paladin Blockchain Security

Issue #13 SMART_CRAFT_FACTORY can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly immutable.

Resolution

INFORMATIONAL

RESOLVED

Issue #14 Lack of validation

Severity

Description The contract contains sections of code which lack proper validation.
This could cause errors in case unexpected inputs are provided.

Line 1142

rewardPerBlock = _rewardPerBlock;

rewardPerBlock could be a huge value. Consider adding an upper
bound for rewardPerBlock.

Lines 1143-1144

startBlock = _startBlock;

bonusEndBlock = _bonusEndBlock;

Consider checking that startBlock is less than bonusEndBlock.

Recommendation Consider implementing the above recommendations.

Resolution
The client has introduced validation on the end block and a
maximum cap to the rewardPerBlock.

RESOLVED

INFORMATIONAL

Page of 20 38 SmartCraftInitializable Paladin Blockchain Security

Issue #15 Typographical errors

Severity

Description Line 1069

// The block number when stakedToken mining ends.

The comment should mention rewardToken instead of
stakedToken.

Line 1070

uint256 public bonusEndBlock;

The variable name should be rewardsEndBlock as this is not the
end of any bonus.

Line 1154

PRECISION_FACTOR =

uint256(10**(uint256(36).sub(decimalsRewardToken)));

The final casting to uint256 is unnecessary.

Line 1165

@param _amount: amount to withdraw (in rewardToken)

The comment should mention deposit (in stakedToken) instead
of withdraw (in rewardToken).

Line 1194

@param _amount: amount to withdraw (in rewardToken)

The comment should mention (in stakedToken) instead of (in
rewardToken).

Line 1219

@notice Withdraw staked tokens without caring about rewards

rewards

The comment should mention rewards only once.

INFORMATIONAL

Page of 21 38 SmartCraftInitializable Paladin Blockchain Security

Line 1250~

function recoverWrongTokens(address _tokenAddress, uint256

_tokenAmount) external onlyOwner {

 require(_tokenAddress != address(stakedToken), "Cannot

be staked token");

 require(_tokenAddress != address(rewardToken), "Cannot

be reward token");

 ERC20(_tokenAddress).safeTransfer(address(msg.sender),

_tokenAmount);

 emit AdminTokenRecovery(_tokenAddress, _tokenAmount);

}

The _tokenAddress could be cast to ERC20 directly and avoid the
unnecessary cast to address and ERC20. It should also be noted that
Paladin in general prefers casting parameters to the interface
IERC20 compared to ERC20 as one does not care about the
implementation of this standard.

Recommendation Consider fixing the typographical errors.

Resolution
Note that the client however did not replace ERC20 with IERC20.

RESOLVED

Issue #16 poolLimitPerUser is vulnerable to Sybil attacks

Severity

Description The poolLimitPerUser value indicates the maximum amount of
token deposited per user. There is however nothing that prevents a
user from creating several wallets to deposit more than allowed.

Recommendation As Sybil resistance is an extremely difficult topic to solve, we have
no easy recommendation. We have seen well-known actors utilise
KYC procedures to do this but expect this to not match with the
ethos of Versa.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 22 38 SmartCraftInitializable Paladin Blockchain Security

Issue #17 Lack of events for stopReward

Severity

Description Function that affect the status of sensitive variables should emit
events as notifications.

Additionally, an actual event RewardStopped was created but is
unused — the client might have forgotten to add it within the
stopReward function.

Recommendation Add an event for the function.

Resolution

INFORMATIONAL

A RewardsStop event has been added.

RESOLVED

Page of 23 38 SmartCraftInitializable Paladin Blockchain Security

2.3 SmartCraftInitializable (Dual Yield)

The SmartCraftInitializable (Dual Yield) is an exact copy of the Single Yield
SmartCraftInitializable except that it adds a second reward token. Users can
deposit their stakedToken to receive rewards in rewardToken and reward2Token.

All the errors previously raised for the single yield version also apply for this
contract.

2.3.1 Privileged Functions

The following functions can be called by the feeToSetter:

• initialize

• emergencyRewardWithdraw

• emergencyReward2Withdraw

• recoverWrongTokens

• stopReward

• updatePoolLimitPerUser

• updateRewardPerBlock

• updateReward2PerBlock

• updateStartAndEndBlocks

• renounceOwnership

• transferOwnership

Page of 24 38 SmartCraftInitializable (Dual Yield) Paladin Blockchain Security

2.3.2 Issues & Recommendations

Issue #18 rewardToken and reward2Token could be the same token

Severity

Description Although not necessarily an issue, the two reward tokens being
equal would be gas inefficient. The single yield version would do the
exact same thing if the rewardPerBlock was set accordingly without
using as much gas.

Recommendation Consider requiring that the two tokens are different.

Resolution
Validation has been added that these two tokens must be different.

RESOLVED

INFORMATIONAL

Page of 25 38 SmartCraftInitializable (Dual Yield) Paladin Blockchain Security

2.4 VersaCROIGO

The VersaCROIGO allows users to deposit lpToken to receive offeringToken in
proportion to the share of all the lpToken deposited in this contract. It is a common
method of raising funds for new token launches.

Each pool can have fees that are proportional to the overflow of deposited tokens
compared to the raising amount. This means that a small portion of the overflow is
not refunded but instead paid to the platform in the form of fees.

2.4.1 Privileged Functions

The following functions can be called by the owner of the contract:

• finalWithdraw

• recoverWrongTokens

• setPool

• updateCampaignId

• updateStartAndEndBlocks

• renounceOwnership

• transferOwnership

Page of 26 38 VersaCROIGO Paladin Blockchain Security

2.4.2 Issues & Recommendations

Issue #19 offeringToken lacks validation

Severity

Location L985

offeringToken.safeTransfer(address(msg.sender),

offeringTokenAmount);

Description There is no guarantee for users that the admin has sent offering
tokens into the contract. harvest() will revert if this is the case,
and users will not be able to call it.

Recommendation Consider sending the tokens within setPool. Be careful if it is a
token with a fee on transfer as the amount transferred and the
amount received may be different.

Resolution
The client has indicated they have no desire to support such tokens.
We have reiterated the need for them to be careful and check all
that tokens added have no fees on transfer.

RESOLVED

LOW SEVERITY

Issue #20 Deposits do not support tokens with a fee on transfer

Severity

Description Within the deposit function, there is no logic that supports tokens
with a fee on transfer. Therefore, during a deposit, the Masterchef
will receive fewer tokens than the user will get credited for. This
could be exploited where a malicious user can drain the whole pool,
which results in absurd reward minting.

Recommendation Consider adding logic to handle tokens with a fee on transfer:

uint256 balanceBefore =

pool.lpToken.balanceOf(address(this));

pool.lpToken.safeTransferFrom(msg.sender, address(this),

_amount); _amount =

pool.lpToken.balanceOf(address(this)).sub(balanceBefore);

Resolution

LOW SEVERITY

RESOLVED

Page of 27 38 VersaCROIGO Paladin Blockchain Security

Issue #21 Unnecessary precision for user allocations

Severity

Location Line 1256

uint256 allocation = _getUserAllocationPool(_user, _pid);

Description Rounding down user allocations with 1e12 precision is unnecessary
and could lead to severe rounding errors for smaller stakers in a
large IGO.

Recommendation Consider inlining the allocation math to avoid this division before
multiplication antipattern.

Resolution RESOLVED

LOW SEVERITY

Issue #22 startBlock and endBlock lack validation

Severity

Location Lines 898~

startBlock = _startBlock;

endBlock = _endBlock;

Description The contract contains sections of code which lack proper validation.
This could cause errors in case unexpected inputs are provided.

Recommendation Consider checking that _startBlock < _endBlock and that
_startBlock > block.number.

Resolution

LOW SEVERITY

RESOLVED

Page of 28 38 VersaCROIGO Paladin Blockchain Security

Issue #23 Governance privileges: Admin can withdraw all lpTokens and
offeringToken at any time

Severity

Location Line 1001

function finalWithdraw(uint256 _lpAmount, uint256

_offerAmount) external override onlyOwner {

Description The admin can withdraw all deposited lpTokens and all
offeringToken at any time before the end block and without giving
users enough time to harvest.

Recommendation Consider adding a requirement that the IGO is over and add a few
days’ delay for users to harvest before being able to call
finalWithdraw.

Resolution
The finalWithdraw can now only occur 100,800 blocks after the
IGO has ended.

RESOLVED

LOW SEVERITY

Issue #24 limitPerUserInLP is vulnerable to Sybil attacks

Severity

Description The limitPerUserInLP value indicates the maximum amount of LP
deposited per user. There is however nothing stopping a user from
creating many wallets to deposit more than allowed.

Recommendation As Sybil resistance is an extremely difficult topic to solve, we have
no easy recommendation. We have seen well-known actors utilize
KYC procedures to do this but expect this to not match with the
ethos of Versa.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 29 38 VersaCROIGO Paladin Blockchain Security

Issue #25 Typographical errors

Severity

Description The contract contains a number of typographic mistakes which
we’ve enumerated below in a single issue in an effort to keep the
report size reasonable.

Line 764

* @dev 100,000 means 0.1(10%)/ 1 means 0.000001(0.0001%)/

1,000,000 means 1(100%)

Lines 1124/1211/1294

* @dev 100,000,000,000 means 0.1 (10%) / 1 means

0.0000000000001 (0.0000001%) / 1,000,000,000,000 means 1

(100%)

The comments are wrong, they should be:

* @dev 100,000,000,000 means 0.1 (10%) / 1 means

0.000000000001 (0.0000000001%) / 1,000,000,000,000 means 1

(100%)

Line 877

* @notice It initializes the contract (for proxy patterns)

This contract is not a proxy contract.

Line 1022

function recoverWrongTokens(address _tokenAddress, uint256

_tokenAmount) external onlyOwner {

The _tokenAddress could be casted directly to IERC20.

Lines 788 / 1179

* @notice External view function to see user offering and

refunding amounts for both pools

The comment should mention that it also returns the tax amount

INFORMATIONAL

Page of 30 38 VersaCROIGO Paladin Blockchain Security

Line 1301

return _userInfo[_user]

[_pid].amountPool.mul(1e18).div(_poolInformation[_pid].total

AmountPool.mul(1e6));

Multiplying by 1e18 and dividing by 1e6 in the same line is
equivalent to multiplying by 1e12. Doing this in two steps has no
benefit with regards to precision.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

Issue #26 msg.sender is unnecessarily cast to address(msg.sender)

Severity

Description msg.sender is cast to address(msg.sender) throughout the
contract. This is unnecessary.

Recommendation Consider replacing all occurrences of address(msg.sender) with
msg.sender.

Resolution RESOLVED

INFORMATIONAL

Issue #27 lpToken and offeringToken can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the variables explicitly immutable.

Resolution RESOLVED

INFORMATIONAL

Page of 31 38 VersaCROIGO Paladin Blockchain Security

2.5 VersaToken

VersaToken is a simple ERC-20 token which will be used as the main reward tokens
for the different staking contracts.

This contract allows for the token to be minted when the mint function is called by
the owner of the token contract, which at the time of deployment would be the
VersaGames team.

As the different contracts need to receive VERSA to distribute them, the team will
maintain the privileges to mint tokens. Users should therefore carefully check that
the team does not mint a large amount of tokens to themselves and not use it as
rewards for the different contracts.

2.5.1 Token Overview

Address 0x00D7699b71290094CcB1a5884cD835bD65a78c17

Name VersaGames

Symbol VERSA

Token Supply Unlimited

Decimal Places 18

Transfer Max Size None

Transfer Min Size None

Max Wallet Size None

Transfer Fees None

Pre-mints 320,000,000

Page of 32 38 VersaToken Paladin Blockchain Security

2.5.1 Privileged Functions

The following functions can be called by the owner of the contract:

• mint

• transferOwnership

• renounceOwnership

Page of 33 38 VersaToken Paladin Blockchain Security

2.5.2 Issues & Recommendations

Issue #28 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

Severity

Description The mint function allows the owner (contract deployer) to mint
tokens before ownership is transferred to the Masterchef. This
could be used to mint a large amount of tokens and potentially
dump them on user generated liquidity when the token contract has
been deployed but before ownership is set to the Masterchef
contract. This risk is prevalent amongst less-reputable projects, and
any pre-mints can be prominently seen on the Blockchain.

Recommendation Consider being forthright if this mint function is to be used by
letting your community know how much was minted, where the
tokens are currently stored, if a vesting contract was used for token
unlocking, and finally the purpose of the mints.

Resolution
At the time of writing, the VersaToken ownership has been
transferred to a TimeLock with a minimum delay of 7 days
(0x24734eac8901743F897702663E3d356D22306A7a). Even
though minting is still possible, users could be alerted to this 7 days
in advance which Paladin deems more than reasonable.

RESOLVED

LOW SEVERITY

Page of 34 38 VersaToken Paladin Blockchain Security

Issue #29 Governance functionality is broken

Severity

Description Although there is YAM-related delegation code in the token contract
which is usually used for governance and voting, the delegation
code can be abused as the delegates are not moved during transfers
and burns. This allows for double spending attacks on the voting
mechanism.

It should be noted that this issue is present in pretty much every
single farm out there including PancakeSwap and even SushiSwap
but it does render this whole mechanism useless.

Because of this, projects like SushiSwap and PancakeSwap all use
snapshot.org nowadays.

Recommendation The broken delegation-related code can be removed to reduce the
size of the contract. If voting is ever desired, it can still be done
through snapshot.org, used by many of the larger projects.

Resolution
The client has indicated that they have already deployed the token
and can therefore no longer remove this code. Given the
informational nature of this issue, this does not pose any user risk.

ACKNOWLEDGED

INFORMATIONAL

Page of 35 38 VersaToken Paladin Blockchain Security

Issue #30 delegateBySig can be frontrun and cause denial of service

Severity

Description Currently if delegateBySig is executed twice, the second execution
will be reverted. It is thus in theory possible for a bot to pick up
delegateBySig transactions in the mempool and execute them
before a contract can. The issue with this is that the rest of said
contract functionality would be lost as well. This could be a
problem in case it would have been executed by a contract that
would have rewarded you for your delegation for example.

Recommendation Similar to the broken governance functionality issue, the delegate
logic can just be removed.

Resolution

INFORMATIONAL

The client has indicated that they have already deployed the token
and can therefore no longer remove this code. Given the
informational nature of this issue, this does not pose any user risk.

ACKNOWLEDGED

Issue #31 mint can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from being
a best practice when the function is not used within the contract,
this can lead to a lower gas usage in certain cases.

Recommendation Consider marking the function as external.

Resolution

INFORMATIONAL

The client has indicated that they have already deployed the token
and can therefore no longer remove this code. Given the
informational nature of this issue, this does not pose any user risk.

ACKNOWLEDGED

Page of 36 38 VersaToken Paladin Blockchain Security

2.6 Timelock

The Timelock contract is a clean fork of Compound Finance’s timelock. This is the
most common contract used in DeFi to time lock governance access and is thus
compatible with most third-party tools.

2.6.1 Issues & Recommendations

No issues found.

Parameter Value Description

Delay 7 days The delay indicates the time the administrator has to wait after
queuing a transaction to execute it.

Minimum
Delay

7 days The minDelay indicates the lowest value that the delay can
minimally be set.

Sometimes, projects will queue a transaction that sets the
delay to zero with the hope that nobody notices it. However,
because of the minimum delay parameter, the value of delay
can never be lower than that of the minDelay value. Note that
the administrator could still queue a transaction to simply
transfer the ownership back to their own account so it is still
important to inspect every transaction carefully.

Maximum
Delay

30 days The maximum delay indicates the highest value that the delay
can be set.

Grace Period 14 days After the delay has expired after queueing a transaction, the
administrator can only execute it within the grace period. This
is to prevent them from hiding a malicious transaction among
much earlier transactions, hoping that it goes unnoticed or
buried, which can be executed in the future.

Page of 37 38 Timelock Paladin Blockchain Security

Page of 38 38 Timelock Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 VersaCROBar
	1.3.2 SmartCraftInitializable
	1.3.3 SmartCraftInitializable (Dual Yield)
	1.3.4 VersaCROIGO
	1.3.5 VersaToken
	1.3.6 Timelock

	2 Findings
	2.1 VersaCROBar
	2.1.1 Issues & Recommendations

	2.2 SmartCraftInitializable
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 SmartCraftInitializable (Dual Yield)
	2.3.1 Privileged Functions
	2.3.2 Issues & Recommendations

	2.4 VersaCROIGO
	2.4.1 Privileged Functions
	2.4.2 Issues & Recommendations

	2.5 VersaToken
	2.5.1 Token Overview
	2.5.1 Privileged Functions
	2.5.2 Issues & Recommendations

	2.6 Timelock
	2.6.1 Issues & Recommendations

