
Page of 1 18 Paladin Blockchain Security

Smart Contract
Security Assessment

For Singular Farm
31 October 2021

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents	 2

Disclaimer	 3

1 Overview	 4

1.1 Summary	 4

1.2 Contracts Assessed	 4

1.3 Findings Summary	 5

1.3.1 MasterSing	 6

2 Findings	 7

2.1 MasterSing	 7

2.1.1 Issues & Recommendations	 8

Page of 2 18 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team. 

Page of 3 18 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Singular Farm on the Avalanche network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

1.2	 	 Contracts Assessed

Project Name Singular Farm

URL https://singular.farm/

Platform Avalanche

Language Solidity

Name Contract
Live Code
Match

MasterSing 0xF2599B0c7cA1e3c050209f3619F09b6daE002857 MATCH

Page of 4 18 Paladin Blockchain Security

https://singular.farm/

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

3 0 3 -

1 0 - 1

4 1 - 3

7 2 - 5

Total 15 3 3 9

 High

 Medium

 Low

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Medium

 Low

 High

 Informational

Page of 5 18 Paladin Blockchain Security

1.3.1	 MasterSing

ID Severity Summary Status
01 initiate can be called again to potentially override the native

token address and drain the Masterchef of any non-staked funds

02 Misconfiguration of key variables could lead to all withdrawals
including emergency withdrawals reverting

03 Contract references a nonexistent address for the JoeRouter
variable causing any singular buybacks to fail

04 earnedDebt is not reset in emergencyWithdraw

05 feeAddress is private

06 Usage of IBEP20 on Avalanche

07 The pendingSing function will revert if totalAllocPoint is zero

08 If withdrawals ever break on Trader Joe, they will also break on
Singular

09 WL_master, WL_earn and JoeRouter can be made constant

10 Contract does not support reflective tokens

11 Rounding vulnerability to tokens with a very large supply can cause
large supply tokens to receive zero emissions

12 initiate, add, set, deposit, withdraw, emergencyWithdraw,
dev, setFeeAddress and updateEmissionRate can be made
external

13 Lack of events for add, set, dev, setFeeAddress and
updateEmissionRate

14 msg.sender is unnecessarily cast to address(msg.sender)

15 Non-inclusive lesser than check within updateEmissionRate

ACKNOWLEDGED

ACKNOWLEDGEDINFO

PARTIAL

ACKNOWLEDGED

HIGH

ACKNOWLEDGED

ACKNOWLEDGED

RESOLVED

LOW

HIGH

LOW ACKNOWLEDGED

PARTIAL

INFO RESOLVED

ACKNOWLEDGED

INFO

LOW

LOW

ACKNOWLEDGED

INFO

HIGH

INFO RESOLVED

INFO

MEDIUM

INFO

PARTIAL

ACKNOWLEDGED

Page of 6 18 Paladin Blockchain Security

2	 	 Findings

2.1	 	 MasterSing

The MasterSing Masterchef is a fork of Goose Finance’s Masterchef. The most
notable feature of the MasterSing contract compared with traditional Masterchefs is
that funds are not just idle within the contract. Instead, the deposited funds are
staked within Trader Joe to receive another level of yield, making it a crossover
between a Masterchef and a vault.

One of the important improvements that Singular has incorporated is to limit the
deposit fees to 4%. In case Trader Joe ever enables dual rewards on pools, these
dual rewards would be used to buyback and burn Singular tokens.

Page of 7 18 MasterSing Paladin Blockchain Security

2.1.1	 Issues & Recommendations

Issue #01 initiate can be called again to potentially override the native
token address and drain the Masterchef of any non-staked funds

Severity

Location Lines 62-63

function initiate(SingToken _sing,address _devaddr,address

_feeAddress,uint256 _singPerSec,uint256 _startTime) public

onlyOwner{

 require(_startTime>block.timestamp ||

poolInfo.length==0,"start block passed");

Description The initiate function is currently improperly written to allow the
owner to call it multiple times. This function is responsible for
setting pretty much all configuration variables including most
importantly the native reward token. As the contract also allows for
pools which do not stake into Trader Joe, the Masterchef might
contain funds of users. A malicious governance could then set the
_sign native token to the address of a staked token, eg. USDC, and
then the staked USDC could potentially be handed out as rewards
(there are a few extra steps necessary for this exploit to circumvent
the fact that minting would revert, but these steps are possible). The
governance would likely have disabled all other pools except one in
which they are the only staker to then receive all USDC within the
Masterchef as rewards. This therefore allows the governance to
drain the Masterchef of any token that is not staked in Trader Joe.

Recommendation Consider fixing the guard on the initiate function to first of all use
the startTime variable and second of all use && instead of ||.

❗ Consider also adding parameter validation to also still require
_startBlock to be in the future, the addresses to be non-zero and
the singPerSec to be smaller or equal to one. Finally, if && is used,
the for loop is no longer necessary.

Resolution

HIGH SEVERITY

The client has indicated that they were aware of this shortcoming
and that the relevant function is behind a timelock. However, since
they cannot upgrade the contracts, it will only be fixed in
subsequent versions of the contract.

PARTIALLY RESOLVED

Page of 8 18 MasterSing Paladin Blockchain Security

Issue #02 Misconfiguration of key variables could lead to all withdrawals
including emergency withdrawals reverting

Severity

Description Within the emergencyWithdraw function, special logic is added to
still unstake the relevant funds from the Trader Joe Masterchef so
they can be sent to the withdrawer. However, since this logic is quite
complex, emergency withdraws would fail if it is misconfigured. In
general, this function should never fail.

1. isStrat and stratId should not be changeable on the pools.

2. earnFee should be capped to at most 100 within both set and
add.

3. devAddr and feeAddress should not be settable to the zero
address, since transfers to these addresses often revert
(specifically the devAddr might break emergencyWithdraw).

4. Dual logic will revert if ever a bad rewarder is set by Trader Joe.

❗ The Sing token was excluded from the scope but if this contract
contains complex logic on transfers it might furthermore break
emergencyWithdraw due to the buybackSing function. We are
assuming that it is a standard ERC-20 token and therefore never has
unexpected behavior on transfer.

Recommendation Consider fixing each of the individual points:

1. Remove isStrat and stratId from the set parameters

2. Cap earnFee to 100 within set and add using a requirement

3. Require devAddr and feeAddress to be non-zero in both the
constructor and setters

4. Consider wrapping the rewarderBonusTokenInfo call in a try-
catch clause. It should be noted that such a clause is vulnerable
to gas griefing. However, in this case we believe it would not be
possible or profitable to execute a gas grief attack on this try-
catch.

Resolution

The client has indicated that they were aware of these shortcomings
and they have put ownership behind a timelock (note: the devAddr
and feeAddress are not). Since the contracts cannot be upgraded,
they will only be fixed in subsequent versions of the contract.

PARTIALLY RESOLVED

HIGH SEVERITY

Page of 9 18 MasterSing Paladin Blockchain Security

https://ronan.eth.link/blog/ethereum-gas-dangers/

Issue #03 Contract references a nonexistent address for the JoeRouter
variable causing any singular buybacks to fail

Severity

Location Line 46

IUniswapV2Router02 public JoeRouter =

IUniswapV2Router02(0xcF0feBd3f17CEf5b47b0cD257aCf6025c5BFf3b

7);

Description The contract contains a variable set to the address of the Trader
Joe router. However, currently this address is set to the ApeSwap
router on BSC causing any attempts to swap tokens on this router to
revert. Furthermore, since the ApeSwap team can likely deploy any
contract at this address because EVM-compatible addresses are
deterministically based on the transaction nonce, this could
potentially give ApeSwap extra privileges if they would deploy a
malicious contract at this address.

❗ It should furthermore be noted that the Trader Joe V2
Masterchef had a vulnerability with the double rewards logic, as
disclosed per this article. It is unlikely that Trader Joe V2 will
therefore ever contain double reward logic, which is heavily
included within the Singular contract. TJ has been working on a V3
which properly manages double rewards, and our audit of this new
contract can be found here.

Recommendation Consider using the correct address for the Trader Joe router,
0x60aE616a2155Ee3d9A68541Ba4544862310933d4. Consider
also checking in with the Trader Joe team about their timeline for
V3.

Resolution

The client was already aware of this issue and will not be adding any
double reward pools. As this issue is still present in the code, it has
been marked as partially resolved. However, as long as no double
reward pools are added (which is unlikely given the aforementioned
article), users should not be affected in any way as the joeRouter is
only used for these.

PARTIALLY RESOLVED

HIGH SEVERITY

Page of 10 18 MasterSing Paladin Blockchain Security

https://traderjoe-xyz.medium.com/security-announcement-double-rewards-removed-due-to-vulnerability-8c4401f225fb
https://paladinsec.co/projects/trader-joe-masterchefv3/

Issue #04 earnedDebt is not reset in emergencyWithdraw

Severity

Description Within the emergencyWithdraw function, the user earnedDebt
variable is not reset. This causes the UI function pendingEarned and
a zero value withdrawal to revert.

Recommendation Consider resetting earnedDebt similar to how the other variables
are reset.

Resolution

MEDIUM SEVERITY

ACKNOWLEDGED

Issue #05 feeAddress is private

Severity

Description Important variables that third parties might want to inspect should
be marked as public so that third parties can easily inspect them
through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variable as public.

Resolution

The client has indicated that users can still inspect this using the
web3 getStorageAt function to discover private variables if they
wish to do so.

ACKNOWLEDGED

LOW SEVERITY

Page of 11 18 MasterSing Paladin Blockchain Security

Issue #06 Usage of IBEP20 on Avalanche

Severity

Description The contract uses the IBEP20 interface within Avalanche. However,
within the Avalanche chain, we expect most coins to adhere to the
slightly restricted ERC-20 interface.

Recommendation Consider using the IERC20 interface instead. Consider also using
SafeIERC20.

Resolution

The client has indicated that BSC was their base chain and that they
preferred to keep changes minimal while porting to the other
chains. As these interfaces overlap almost completely and only the
compatible functions are used, this does not affect users in any way.

RESOLVED

LOW SEVERITY

Issue #07 The pendingSing function will revert if totalAllocPoint is zero

Severity

Description In the pendingSing function, at some point a division is made by the
totalAllocPoint variable. If all pools have their rewards set to
zero, this variable will be zero as well. The requests will then revert
with a division by zero error.

Recommendation Consider only calculating the accumulated rewards since the
lastRewardTime if the totalAllocPoint variable is greater than
zero. This check can simply be added to the existing check that
verifies the block.timestamp and pool.totalcap, like so:

if (block.timestamp > pool.lastRewardTime && pool.totalcap !

= 0 && totalAllocPoint > 0) {

Resolution

LOW SEVERITY

The client has indicated they might add such a check in future
version and that in the meantime they will never set
totalAllocPoint to zero.

ACKNOWLEDGED

Page of 12 18 MasterSing Paladin Blockchain Security

Issue #08 If withdrawals ever break on Trader Joe, they will also break on
Singular

Severity

Description If a Masterchef messes up their rewards logic by either setting the
allocPoints or minting rate exceptionally high and causing
overflow reversions, all withdraw calls would fail. This is the reason
every Masterchef including Trader Joe contains an
emergencyWithdraw function which can be used to still withdraw in
this situation.

Recommendation To resolve this issue, a fundamental redesign of the system might be
required similar to how panicable vaults work.

Resolution

The client has indicated that this scenario is highly unlikely given the
professionalism and scale of Trader Joe, however, they might add
such an escape mechanism in the future.

ACKNOWLEDGED

LOW SEVERITY

Issue #09 WL_master, WL_earn and JoeRouter can be made constant

Severity

Description Variables that are never modified can be indicated as such with the
constant keyword. This is considered best practice since it makes
the code more accessible for third party reviewers and saves gas.

Recommendation Consider making the above variables explicitly constant.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 13 18 MasterSing Paladin Blockchain Security

Issue #10 Contract does not support reflective tokens

Severity

Description The contract does not support tokens with a transfer tax. If these
would be added, not everyone who deposits would be able to
withdraw again as people would be withdrawing from each other's
stake.

Recommendation Consider using the current standard of handling deposits, which is
based on how Uniswap handles transfer fees:

uint256 balanceBefore =

pool.lpToken.balanceOf(address(this));

pool.lpToken.transferFrom(msg.sender, address(this),

_amount); 

_amount =

pool.lpToken.balanceOf(address(this)).sub(balanceBefore);

This issue has been reduced to informational severity since the
client clearly does not plan to support single-asset pools.

Resolution

INFORMATIONAL

The client has indicated that this was deliberately not done to
preserve on gas costs. As the client basically only lists LP tokens,
this issue has been marked as resolved.

RESOLVED

Page of 14 18 MasterSing Paladin Blockchain Security

Issue #11 Rounding vulnerability to tokens with a very large supply can cause
large supply tokens to receive zero emissions

Severity

Description Within updatePool, deposit, withdraw and the pending rewards
function, accSingPerShare and accEarnPerShare is based upon
the pool.totalcap variable.

pool.accSingPerShare =

pool.accSingPerShare.add(singReward.mul(1e12).div(pool.total

cap)

However, if this pool.totalcap becomes a severely large value, this
will cause precision errors due to rounding. This is famously seen
when pools decide to add meme-tokens which usually have huge
supplies and no decimals.

❗ Within the updateReward function,
_added.mul(pool.earnfee).div(100) is also calculated twice.

Recommendation Consider increasing precision to 1e18 across the entire contract. It
should be noted that even a precision of 1e18 has been considered
small when tokens like PolyDoge were added to Masterchefs of our
client. In case the client thinks it is probable that such tokens will be
added we recommend testing which precision variable is most
appropriate to support them without potentially reverting due to
overflows.

Also consider caching the redundant calculation in updateReward in
a variable to reduce gas usage.

Resolution

INFORMATIONAL

The client has indicated that they also encountered this issue in
production and will be careful to inspect the tokens they list in the
future.

ACKNOWLEDGED

Page of 15 18 MasterSing Paladin Blockchain Security

Issue #12 initiate, add, set, deposit, withdraw, emergencyWithdraw,
dev, setFeeAddress and updateEmissionRate can be made
external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from
being a best practice when the function is not used within the
contract, this can lead to a lower gas usage in certain cases.

Recommendation Consider marking the above variables as external.

Resolution

INFORMATIONAL

The client has indicated that they will set these functions to
external in subsequent contract versions.

ACKNOWLEDGED

Issue #13 Lack of events for add, set, dev, setFeeAddress and
updateEmissionRate

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the above functions.

❗ Consider also renaming the dev function to setDevAddress to
further improve the ease of interpretation of this function for third
parties.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 16 18 MasterSing Paladin Blockchain Security

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Issue #14 msg.sender is unnecessarily cast to address(msg.sender)

Severity

Description The msg.sender is cast to address(msg.sender) throughout the
contract when used with pool.lpToken.safeTransfer(). This is
unnecessary.

Recommendation Consider replacing all occurrences of address(msg.sender) with
msg.sender.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Issue #15 Non-inclusive lesser than check within updateEmissionRate

Severity

Location Line 340

require(_singPerSec<1 ether,"too large")

Description The inequality check within the updateEmissionRate function is
non-inclusive which in our experience tends to be undesirable by
our clients as they might want to set such a variable to “up to one
token per second” instead of 0.999… tokens per second.

Recommendation Consider using <= instead.

Resolution

The client has indicated that the emission schedule was to start at
0.33 tokens per second and decrease this over time. This exclusive
limit was only a safety guard and there are no plans to set the
emission rate to exactly 1 token per second.

RESOLVED

INFORMATIONAL

Page of 17 18 MasterSing Paladin Blockchain Security

Page of 18 18 MasterSing Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 MasterSing

	2 Findings
	2.1 MasterSing
	2.1.1 Issues & Recommendations

