
Page of 1 29 Paladin Blockchain Security

Smart Contract
Security Assessment

For CryptEx Tokens
21 October 2021

paladinsec.co info@paladinsec.co

Final Report

Table of Contents
Table of Contents 2

Disclaimer 3

1 Overview 4
1.1 Summary 4
1.2 Contracts Assessed 4
1.3 Findings Summary 5

1.3.1 TokenConstructorFactory 6

1.3.2 ReflectToken 7

1.3.3 RfiTokenDeployCode 8

1.3.4 TokenDeployCode 8

1.3.5 DefaultToken 8

2 Findings 9
2.1 TokenConstructorFactory 9

2.1.1 Privileged Roles 9

2.1.2 Issues & Recommendations 10

2.2 ReflectToken 14
2.2.1 Privileged Roles 14

2.2.2 Issues & Recommendations 15

2.3 RfiTokenDeployCode 24
2.3.1 Privileged Roles 24

2.3.2 Issues & Recommendations 25

2.4 TokenDeployCode 26
2.4.1 Privileged Roles 26

2.4.2 Issues & Recommendations 27

2.5 DefaultToken 28
2.5.1 Issues & Recommendations 28

Page of 2 29 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity of
and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in the
codes that were provided for the scope of this audit. This audit report does not constitute agreement,
acceptance or advocation for the Project that was audited, and users relying on this audit report
should not consider this as having any merit for financial advice in any shape, form or nature. The
contracts audited do not account for any economic developments that may be pursued by the Project
in question, and that the veracity of the findings thus presented in this report relate solely to the
proficiency, competence, aptitude and discretion of our independent auditors, who make no
guarantees nor assurance that the contracts are completely free of exploits, bugs, vulnerabilities or
deprecation of technologies. Further, this audit report shall not be disclosed nor transmitted to any
persons or parties on any objective, goal or justification without due written assent, acquiescence or
approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor should it
be used to signal that any persons reading this report should invest their funds without sufficient
individual due diligence regardless of the findings presented in this report. Information is provided ‘as
is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the contracts
audited. In no event will Paladin or its partners, employees, agents or parties related to the provision
of this audit report be liable to any parties for, or lack thereof, decisions and/or actions with regards to
the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to cryptocurrencies
are highly volatile and speculative by nature. All reasonable due diligence and safeguards may yet be
insufficient, and users should exercise considerable caution when participating in any shape or form in
this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate recommendations to
the Project team with respect to the rectification, amendment and/or revision of any highlighted issues,
vulnerabilities or exploits within the contracts provided. It is the sole responsibility of the Project team
to sufficiently test and perform checks, ensuring that the contracts are functioning as intended,
specifically that the functions therein contained within said contracts have the desired intended
effects, functionalities and outcomes of the Project team.

Page of 3 29 Paladin Blockchain Security

1 Overview
This report has been prepared for CryptEx’s token contract on the Binance Smart
Chain (BSC). Paladin provides a user-centred examination of the smart contracts to
look for vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1 Summary

1.2 Contracts Assessed

Project Name CryptEx by HashEx

URL https://cryptexlock.me/

Platform Binance Smart Chain

Language Solidity

Name Contract
Live Code
Match

TokenConstructorFactory TokenConstructorFactory.sol

ReflectToken ReflectToken.sol

RfiTokenDeployCode RfiTokenDeployCode.sol

TokenDeployCode TokenDeployCode.sol

DefaultToken DefaultToken.sol

Page of 4 29 Paladin Blockchain Security

https://cryptexlock.me/

1.3 Findings Summary

Classification of Issues

Severity Found Resolved Partially Resolved
Acknowledged

(no change made)

1 1 - -

4 4 - -

4 3 - 1

13 12 - 1

Total 22 20 - 2

 High

 Medium

 Low

 Informational

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its functions.
Issues under this classification are recommended to be fixed with utmost
urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be fixed
as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be fixed
nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level of
risk, if any.

 High

 Medium

 Low

 Informational

Page of 5 29 Paladin Blockchain Security

1.3.1 TokenConstructorFactory

ID Severity Summary Status

01 No maximum payment amount can be set which might cause
purchasers to overpay if governance changes the prices before the
frontend updates

02 Typographical errors

03 Unused ERC20 import

04 rfiTokenDeployCodeAddress and tokenDeployCodeAddress should be
marked as public

05 Lack of events for setDeployCodeAddresses and collectPayments

LOW

RESOLVED

INFO RESOLVED

INFO

RESOLVEDINFO

INFO

ACKNOWLEDGED

RESOLVED

Page of 6 29 Paladin Blockchain Security

1.3.2 ReflectToken

ID Severity Summary Status

06 Token router is swappable, which could allow the owner to steal
transfer taxes or turn the token into a honeypot

07 The transaction limit can be set infinitesimally small, making any
transaction fail

08 Precision issue with reflection rate

09 Exclusion logic is flawed which could lead to transfers failing

10 Token could turn into a partial honeypot if the liquify threshold is ever
set to zero

11 feeLimit can be made public

12 Referral fee is sent to msg.sender and the referral of msg.sender
instead of the from address

13 While liquidity is not added to the pair, the token might turn into a
honeypot

14 Lack of parameter validation on liquidityAddress

15 _updateSwapPair contains unused isPair parameter

16 Distribute insufficient amount error is ambiguous

17 Lack of events for distribute, excludeFromReward, includeInReward,
excludeFromFee, includeInFee and recoverLockedTokens

18 _decimals, BRN_ENABLED, MRK_ENABLED, REF_ENABLED and feeLimit can
be made immutable

19 Events are wrongly emitted within the constructor and setFee function

INFO RESOLVED

RESOLVED

RESOLVED

INFO

RESOLVED

RESOLVED

INFO

RESOLVED

MEDIUM

RESOLVED

INFO

RESOLVED

LOW

ACKNOWLEDGED

MEDIUM

RESOLVED

LOW

INFO

RESOLVED

RESOLVED

LOW

MEDIUM

MEDIUM

HIGH

RESOLVED

INFO

RESOLVED

Page of 7 29 Paladin Blockchain Security

1.3.3 RfiTokenDeployCode

1.3.4 TokenDeployCode

1.3.5 DefaultToken

No issues found.

ID Severity Summary Status

20 Gas optimization: Usage of memory instead of calldata RESOLVEDINFO

ID Severity Summary Status

21 Gas optimization: Usage of memory instead of calldata

22 Typographical error

RESOLVED

RESOLVED

INFO

INFO

Page of 8 29 Paladin Blockchain Security

2 Findings

2.1 TokenConstructorFactory

The TokenConstructorFactory is the main interface for users to create both simple
ERC-20 tokens and reflection tokens. It levies a fee in either the native chain token or
CRX. In addition, the users can opt to pay for an audit as well, which we expect will be
taken care of off-chain, although we are not sure what this audit would include since
the code is already audited. If the audit option is chosen during token creation, an
extra fee is levied. All fees are freely configurable in the smart contract.

2.1.1 Privileged Roles

The following functions can be called by the owner of the contract:

• setDeployCodeAddresses

• updatePrices

• setBnbToCrxRatio

• collectPayments

• changeIsAddressAGoodRouter

Page of 9 29 TokenConstructorFactory Paladin Blockchain Security

2.1.2 Issues & Recommendations

Issue #01 No maximum payment amount can be set which might cause
purchasers to overpay if governance changes the prices before the
frontend updates

Severity

Description The creation functions do not set a maximum price for the purchase
which means that users might for example see a quote of 10 tokens on
the frontend and create the transaction. However, if the governance
updates the price in the meantime, their transaction might execute at a
higher price than expected which might cause user frustration and
confusion in case this happens.

Recommendation Consider adding a maximum price to the createToken functions that is
automatically set to the current price on the frontend. If a price is
updated before the frontend incorporates the new price, those
createToken transactions will then fail.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 10 29 TokenConstructorFactory Paladin Blockchain Security

Issue #02 Typographical errors

Severity

Description The contract contains the following typographical errors:

Line 60
address owner,

This address is not the owner but the receiver of the initial mint.

Line 122
@return address oft the created token

This should be “of”.

Line 197
(address tokenAddress, address issuer) = _createRFIToken(

The second parameter should be the owner which is not necessarily
equal to the issuer of the token.

Line 228
Issuer

This address is not the owner but the receiver of the initial mint.

Line 278
* @return address of the created token

This function returns the token price.

Line 303
 * @notice Updates prices in native and CRX and customize the
price ration between ERC20 and RFI tokens

This comment looks outdated since this function only updates the
native price directly, and ration might be a typographical error.

Line 348
* @param _bnbToCrxRatioBP BNB to CRX ratio for payments multiplied
by 1000, i.e. 1:1 BNB/CRX ratio is _bnbToCrxRatioBP = 1000

This multiplier is 10000 in production.

INFORMATIONAL

Page of 11 29 TokenConstructorFactory Paladin Blockchain Security

Recommendation Consider fixing the above errors.

Resolution RESOLVED

Issue #03 Unused ERC20 import

Severity

Location Line 26
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

Line 34
using SafeERC20 for ERC20;

Description The code contains unused code sections which might be confusing to
third-party reviewers.

Recommendation Consider removing the unused code sections.

Resolution

INFORMATIONAL

RESOLVED

Page of 12 29 TokenConstructorFactory Paladin Blockchain Security

Issue #04 rfiTokenDeployCodeAddress and tokenDeployCodeAddress should
be marked as public

Severity

Description Variables that are essential to the functioning of the contract should be
marked as public to signal this to third parties.

Recommendation Consider making these variables public.

Resolution

INFORMATIONAL

RESOLVED

Issue #05 Lack of events for setDeployCodeAddresses and collectPayments

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events to the above functions.

Resolution

INFORMATIONAL

RESOLVED

Page of 13 29 TokenConstructorFactory Paladin Blockchain Security

2.2 ReflectToken

The ReflectToken contract is a template token contract deployed for all reflective
tokens created with the CryptEx system. It allows for a reflection fee, liquidity
generation fee, a burn fee, a marketing fee and a referral fee split of 50/50 to the
referral and referee.

The contract improves upon the design of SafeMoon in several regards by having more
readable code and more sound include/exclude logic. It is therefore not a
straightforward SafeMoon fork; instead, it is inspired by the reflection mechanism. The
fees can be reconfigured up to the feeLimit which can be set to a maximum of 50%
during deployment but cannot be changed afterwards.

2.2.1 Privileged Roles

The following functions can be called by the owner of the contract:

• excludeFromReward

• includeInReward

• recoverLockedTokens

• excludeFromFee

• includeInFee

• setFee

• setLiquifyStatus

• setLiquifyThreshold

• setMarketingAddress

• setReferral

• setTxLimit

• setSwapRouter

Page of 14 29 ReflectToken Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #06 Token router is swappable, which could allow the owner to steal
transfer taxes or turn the token into a honeypot

Severity

Description The contract uses a router to exchange the tokens to WETH for
automatic liquidity generation, however, this router is exchangeable
which could lead to the owner exchanging it for a malicious router
which can be any contract of their choosing. This could be a contract
that simply steals the fees instead of swapping or worse it could be a
contract which reverts, which would effectively turn the token into a
honeypot as purchases would be the only transactions which still work.

Recommendation Consider making the router immutable and removing the swap
functions.

Resolution
The token router can now only be changed to routers approved by
CryptEx.

RESOLVED

HIGH SEVERITY

Issue #07 The transaction limit can be set infinitesimally small, making any
transaction fail

Severity

Description There is no lower bound on the txLimit, the variable that limits the
maximum amount of tokens that can be transferred in a single
transaction. This allows the governance to set this variable to as low as
zero to effectively disable transfers. The risk that this might occur
could cause mistrust among investors.

Recommendation Consider adding a realistic lower bound to the aforementioned
function.

Resolution

MEDIUM SEVERITY

A basic limit of 0.0001% of the total supply has been added. It should
be noted that this might very well be too low for transfers.

RESOLVED

Page of 15 29 ReflectToken Paladin Blockchain Security

Issue #08 Precision issue with reflection rate

Severity

Location Lines 475-480
function _getRate() public view returns (uint256) {
 uint256 totalRatedBalance_ = _totalRatedBalance;

 if (totalRatedBalance_ == 0) return (_totalReflection /
_totalSupply);
 return (_totalRatedReflection / totalRatedBalance_);
}

Description The _getRate function does a division. However, as Solidity does not
have decimals, there could be severe rounding errors if
totalRatedReflection_ ever gets close to _totalRatedBalance. This
is slightly exaggerated by the fact that _totalRatedReflection
decreases over time, while totalRatedBalance generally stays
constant.

Recommendation Consider returning both totalReflection and totalBalance so
derivative functions can use a multiply-divide pattern to maintain
precision.

This recommendation however leads to a second issue that the
multiplication might have a high chance of overflowing. For this, the
Uniswap mulDiv function could be considered, which does a multiply-
divide pattern without overflow risk.

As this is all quite a compromise, it might suffice to add validation that
totalReflection will always be orders of magnitude higher than
totalSupply. This issue will be resolved when the client provides
sufficient motivation and safeguards that these two variables can never
get close to each other. It should be noted that
totalRatedReflections decreases over time and it might therefore be
difficult to guarantee this aspect.

Resolution

MEDIUM SEVERITY

The recommendation has been implemented.

RESOLVED

Page of 16 29 ReflectToken Paladin Blockchain Security

Issue #09 Exclusion logic is flawed which could lead to transfers failing

Severity

Location Lines 593-594
_takeLiquidity(liqAmount, rate);
_updateBalances(from, to, amount, rate, feesAmount);

Description The contract contains logic to exclude and include accounts in
receiving reflection rewards. Traditionally, within SafeMoon, this
functionality was highly flawed and the client has already resolved it to
a great extent. However, there are still certain edge cases which cause
the token to malfunction due to this behavior like when all accounts are
excluded.

We’ve provided statements for this that will fail and could be used to
build a test case:

await token.connect(owner).transfer(token.address,
parseEther('1'));
await token.connect(owner).excludeFromReward(owner.address);
await token.connect(owner).excludeFromReward(token.address);
await token.connect(owner).setLiquifyThreshold(1000);
await token.connect(owner).transfer(alice.address,
parseEther('1'));

Recommendation The reason why this logic fails is because _takeLiquidity is called
before _updateBalances, while _updateBalances is the operation that
mints the reflectionary tokens that would be taken again.

Consider explaining to use why _takeLiquidity has to go before
_updateBalances, if there is no such explanation, consider carefully
validating whether the following resolution has no side-effects.

_updateBalances(from, to, amount, rate, feesAmount);
_takeLiquidity(liqAmount, rate);

❗ WARNING: This same issue presents itself for the _takeFee
function. Consider re-organizing this function as well in case it can be
executed after _updateBalances without side-effects.

Resolution

MEDIUM SEVERITY

The client has adjusted the functionality so both _takeLiquidity and
_takeFee are ordered below _updateBalances.

RESOLVED

Page of 17 29 ReflectToken Paladin Blockchain Security

Issue #10 Token could turn into a partial honeypot if the liquify threshold is ever
set to zero

Severity

Description The token will attempt to swap liquidity once the liquify threshold is
reached in fees collected. However, if this variable is set to zero, this
threshold will be reached even though there are no tokens within the
router. Therefore, the contract will currently attempt a swap and
liquidity addition and revert Uniswap-like AMMs will revert due to the
lack of input tokens.

We’ve provided statements for this that will fail and could be used to
build a test case:

await token.connect(owner).setLiquifyThreshold(0);
await token.connect(owner).transfer(alice.address,1);

Recommendation Consider adding a minimum to the liquify threshold and furthermore
wrapping the uniswap operations within try-catch statements.

Resolution

MEDIUM SEVERITY

The Uniswap transactions are wrapped into try-catch statements.

RESOLVED

Issue #11 feeLimit can be made public

Severity

Description Variables that are essential to the safety of the contract should be
marked as public so third party reviewers can easily inspect them.

Recommendation Consider making the variable public.

Resolution

LOW SEVERITY

RESOLVED

Page of 18 29 ReflectToken Paladin Blockchain Security

Issue #12 Referral fee is sent to msg.sender and the referral of msg.sender
instead of the from address

Severity

Location Line 537
address referralAddress = referrals[msg.sender];

Line 542
_takeFee(msg.sender, ref / 2, rate);

Description The referral fee is sent to msg.sender. In practice, this will however
make the referral mechanism near completely useless, since pretty
much every transaction is a contract interaction where the msg.sender
is equal to the contract executing transferFrom.

Recommendation Consider using sender, recipient or tx.origin instead.

Resolution

LOW SEVERITY

The referral fee is now granted to tx.origin.

RESOLVED

Issue #13 While liquidity is not added to the pair, the token might turn into a
honeypot

Severity

Description While there is no liquidity within the pair, the liquidity mechanism will
revert. Since this mechanism is not called on token purchases, this
essentially turns the token into a honeypot which might seriously
mislead investors.

Recommendation Consider wrapping the AMM operations in solidity try-catch
statements to always allow sales to proceed, even when the liquidity
generation mechanism does not function.

Resolution

LOW SEVERITY

The recommendation has been implemented.

RESOLVED

Page of 19 29 ReflectToken Paladin Blockchain Security

Issue #14 Lack of parameter validation on liquidityAddress

Severity

Location Line 422
function setLiquidyAddress(address newLiquidityAddress) external
onlyOwner {

Description The setLiquidityAddress function currently does not validate that the
liquidityAddress is not equal to the zero address. Many tokens revert
when they are sent to the zero address and this could cause contract
malfunction.

This issue is marked as informational severity as Uniswap-forked
exchanges without modifications generally do not revert when their LP
tokens are transferred to the zero address. We however still raise this
issue since there is no guarantee that the router will be a
straightforward fork.

Recommendation Consider validating the newLiquidityAddress.

require(newLiquidityAddress != address(0);

Resolution

INFORMATIONAL

The recommended validation has been implemented.

RESOLVED

Page of 20 29 ReflectToken Paladin Blockchain Security

Issue #15 _updateSwapPair contains unused isPair parameter

Severity

Location Lines 469-470
function _updateSwapPair(address pair, bool isPair) internal {
 swapPairs[pair] = isPair;

Description The _updateSwapPair function contains an isPair parameter which is
never set to false throughout the contract. This might confuse third
party reviewers into thinking swapPair addresses can be unset while
this is in fact not possible.

Recommendation Consider simplifying the function to have it indicate the true behavior.

function _setSwapPair(address pair) internal {
 swapPairs[pair] = true;

Resolution
The parameter has been removed.

RESOLVED

INFORMATIONAL

Issue #16 Distribute insufficient amount error is ambiguous

Severity

Location Lines 333-334
_reflections[msg.sender] -= rAmount;
_totalReflection -= rAmount;

Description The distribute function emits an ambiguous error when the account
has insufficient funds to distribute. This might cause confusion for users
that call this function.

Recommendation Consider adding a requirement to explicitly handle the case:

require(_reflections[msg.sender] >= rAmount, “Insufficient
balance”);

Resolution

INFORMATIONAL

RESOLVED

Page of 21 29 ReflectToken Paladin Blockchain Security

Issue #17 Lack of events for distribute, excludeFromReward,
includeInReward, excludeFromFee, includeInFee and
recoverLockedTokens

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Consider adding events to the above functions.

Resolution

INFORMATIONAL

RESOLVED

Issue #18 _decimals, BRN_ENABLED, MRK_ENABLED, REF_ENABLED and feeLimit
can be made immutable

Severity

Description Variables that are set within the constructor and remain unchanged
throughout the contract can be marked as such using the keyword
immutable. This not only signals to third-party reviewers that these
variables will remain unchanged but it furthermore saves gas.

Recommendation Consider making the above variables immutable.

Resolution

INFORMATIONAL

RESOLVED

Page of 22 29 ReflectToken Paladin Blockchain Security

Issue #19 Events are wrongly emitted within the constructor and setFee function

Severity

Description The constructor and setFee function contain events with parameters
that do not necessarily match the actual stored state variable related to
the parameter. This is because both fees and the marketing address are
not always set depending on other parameters.

Recommendation Consider only emitting the UpdateMarketingAddress if the marketing
address was actually set and UpdateFees with the fee values that were
actually set.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 23 29 ReflectToken Paladin Blockchain Security

2.3 RfiTokenDeployCode

The RfiTokenDeployCode is a simple deployer for ReflectTokens (reflective tokens
similar to SafeMoon). It contains a single function that takes in token parameters, then
deploys the token and returns the address. This function can only be called by the
main TokenConstructorFactory.

2.3.1 Privileged Roles
• deployNewToken (callable byTokenConstructorFactory)

Page of 24 29 RfiTokenDeployCode Paladin Blockchain Security

2.3.2 Issues & Recommendations

Issue #20 Gas optimization: Usage of memory instead of calldata

Severity

Description The contract uses memory to signify a string instead of calldata.
Using calldata could be advantageous for gas usage in this case.

Recommendation Consider using calldata instead.

Resolution RESOLVED

INFORMATIONAL

Page of 25 29 RfiTokenDeployCode Paladin Blockchain Security

2.4 TokenDeployCode

The TokenDeployCode is a simple deployer for DefaultTokens (basic ERC-20 tokens).
It contains a single function that takes in token parameters, then deploys the token
and returns the address. This function can only be called by the main
TokenConstructorFactory.

2.4.1 Privileged Roles
• deployNewToken (callable byTokenConstructorFactory)

Page of 26 29 TokenDeployCode Paladin Blockchain Security

2.4.2 Issues & Recommendations

Issue #21 Gas optimization: Usage of memory instead of calldata

Severity

Description The contract uses memory to signify a string instead of calldata.
Using calldata could be advantageous for gas usage in this case.

Recommendation Consider using calldata instead.

Resolution

INFORMATIONAL

RESOLVED

Issue #22 Typographical error

Severity

Description The contract contains the following typographical error:

Line 39
issuer

This address is not the issuer but the receiver of the initial mint.

Recommendation Consider fixing the typographical error.

Resolution RESOLVED

INFORMATIONAL

Page of 27 29 TokenDeployCode Paladin Blockchain Security

2.5 DefaultToken

The DefaultToken is a simple ERC-20 token that can be deployed with a custom name,
symbol, total supply and decimals. The total supply is minted to the configured
receiver address and no further minting can occur.

2.5.1 Issues & Recommendations

No issues found.

Page of 28 29 TokenDeployCode Paladin Blockchain Security

Page of 29 29 TokenDeployCode Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 TokenConstructorFactory
	1.3.2 ReflectToken
	1.3.3 RfiTokenDeployCode
	1.3.4 TokenDeployCode
	1.3.5 DefaultToken

	2 Findings
	2.1 TokenConstructorFactory
	2.1.1 Privileged Roles
	2.1.2 Issues & Recommendations

	2.2 ReflectToken
	2.2.1 Privileged Roles
	2.2.2 Issues & Recommendations

	2.3 RfiTokenDeployCode
	2.3.1 Privileged Roles
	2.3.2 Issues & Recommendations

	2.4 TokenDeployCode
	2.4.1 Privileged Roles
	2.4.2 Issues & Recommendations

	2.5 DefaultToken
	2.5.1 Issues & Recommendations

